Rapid in situ identification of biological specimens via DNA amplicon sequencing using miniaturized laboratory equipment
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
Google Scholar
Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).
Google Scholar
Seebens, H. et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA 115, E2264–E2273 (2018).
Google Scholar
Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, S96–S99 (2003).
Google Scholar
Ratnasingham, S. & Hebert, P. bold: The Barcode of Life Data System. Mol. Ecol. Notes 7, 355–364 (2007).
Google Scholar
Mizrachi, I. Chapter 1: GenBank: The Nucleotide Sequence Database (NCBI, 2013); https://www.ncbi.nlm.nih.gov/books/NBK470040/
Shokralla, S. et al. Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci. Rep. 5, 9687 (2015).
Google Scholar
Martinez, B. et al. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 22, 75–100 (2020).
Krehenwinkel, H., Pomerantz, A. & Prost, S. Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: current uses and future directions. Genes 10, 858 (2019).
Google Scholar
Menegon, M. et al. On site DNA barcoding by nanopore sequencing. PLoS ONE 12, e0184741 (2017).
Google Scholar
Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7, giy033 (2018).
Blanco, M. B. et al. Next-generation technologies applied to age-old challenges in Madagascar. Conserv. Genet. 21, 785–793 (2020).
Chang, J. J. M., Ip, Y. C. A., Ng, C. S. L. & Huang, D. Takeaways from mobile DNA barcoding with BentoLab and MinION. Genes 11, 1121 (2020).
Google Scholar
Johnson, S. S., Zaikova, E., Goerlitz, D. S., Bai, Y. & Tighe, S. W. Real-time DNA sequencing in the Antarctic Dry Valleys using the Oxford Nanopore Sequencer. J. Biomol. Tech. 28, 2–7 (2017).
Google Scholar
Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).
Google Scholar
Faria, N. R. et al. Mobile real-time surveillance of Zika virus in Brazil. Genome Med. 8, 97 (2016).
Google Scholar
Watsa, M., Erkenswick, G. A., Pomerantz, A. & Prost, S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 18, e3000667 (2020).
Google Scholar
Salazar, A. N. et al. An educational guide for nanopore sequencing in the classroom. PLoS Comput. Biol. 16, e1007314 (2020).
Google Scholar
Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).
Google Scholar
Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 6, 1–32 (2017).
Wick, R. R., Judd, L. M. & Holt, K. E. Deepbinner: demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 14, e1006583 (2018).
Google Scholar
Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. Gigascience 8, giz006 (2019).
Google Scholar
Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17, 96 (2019).
Google Scholar
Vasiljevic, N. et al. Developmental validation of Oxford Nanopore Technology MinION sequence data and the NGSpeciesID bioinformatic pipeline for forensic genetic species identification. Forensic Sci. Int. Genet. 53, 102493 (2021).
Google Scholar
Maestri, S. et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10, 468 (2019).
Google Scholar
Seah, A., Lim, M. C. W., McAloose, D., Prost, S. & Seimon, T. A. MinION-based DNA barcoding of preserved and non-invasively collected wildlife samples. Genes 11, 445 (2020).
Google Scholar
Srivathsan, A. et al. MinION barcodes: biodiversity discovery and identification by everyone, for everyone. Preprint at BioRxiv https://doi.org/10.1101/2021.03.09.434692 (2021).
Atkins, P. A. P., Gamo, M. E. S. & Voytas, D. F. Analyzing plant gene targeting outcomes and conversion tracts with nanopore sequencing. Int. J. Mol. Sci. 22, 9723 (2021).
Google Scholar
Simmons, D. R. et al. The Collection of Zoosporic Eufungi at the University of Michigan (CZEUM): introducing a new repository of barcoded Chytridiomyceta and Blastocladiomycota cultures. IMA Fungus 11, 20 (2020).
Google Scholar
Sahlin, K., Lim, M. C. W. & Prost, S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 11, 1392–1398 (2021).
Google Scholar
Taberlet, P. et al. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).
Google Scholar
Dieffenbach, C. W., Lowe, T. M. & Dveksler, G. S. General concepts for PCR primer design. Genome Res. 3, S30–S37 (1993).
Google Scholar
Singh, V. & Kumar, A. PCR primer design. Mol. Biol. Today 2, 27–32 (2001).
Google Scholar
Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
Google Scholar
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
Google Scholar
Bohmann, K. et al. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Res. 00, 1–16 (2021).
Smyth, R. P. et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51 (2010).
Google Scholar
Zizka, V. M. A., Elbrecht, V., Macher, J.-N. & Leese, F. Assessing the influence of sample tagging and library preparation on DNA metabarcoding. Mol. Ecol. Resour. 19, 893–899 (2019).
Google Scholar
Arulandhu, A. J. et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. Gigascience 6, gix080 (2017).
Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).
Google Scholar
Lange, V. et al. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 15, 63 (2014).
Google Scholar
Labrador, K., Agmata, A., Palermo, J. D., Follante, J. & Pante, Ma. J. Authentication of processed Philippine sardine products using Hotshot DNA extraction and minibarcode amplification. Food Control 98, 150–155 (2019).
Google Scholar
Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). BioTechniques 29, 52–54 (2000).
Google Scholar
Knot, I. E., Zouganelis, G. D., Weedall, G. D., Wich, S. A. & Rae, R. DNA barcoding of nematodes using the MinION. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00100 (2020).
Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).
Google Scholar
Wilson, B. D., Eisenstein, M. & Soh, H. T. High-fidelity nanopore sequencing of ultra-short DNA targets. Anal. Chem. 91, 6783–6789 (2019).
Google Scholar
Cornelis, S., Gansemans, Y., Deleye, L., Deforce, D. & Van Nieuwerburgh, F. Forensic SNP Genotyping using Nanopore MinION Sequencing. Sci. Rep. 7, 41759 (2017).
Google Scholar
Srivathsan, A. et al. A MinIONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 18, 1035–1049 (2018).
Google Scholar
Sahlin, K. & Medvedev, P. in Research in Computational Molecular Biology (ed. Cowen, L. J.) 227–242 (Springer, 2019).
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).
Google Scholar
Daily, J. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC Bioinform. 17, 81 (2016).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Byagathvalli, G., Pomerantz, A., Sinha, S., Standeven, J. & Bhamla, M. S. A 3D-printed hand-powered centrifuge for molecular biology. PLoS Biol. 17, e3000251 (2019).
Google Scholar
Madden, T. Appendices. BLAST Command Line Applications User Manual [Internet] (Bethesda (MD): National Center for Biotechnology Information (US, 2021); https://www.ncbi.nlm.nih.gov/books/NBK279684/
Watsa, M., Wildlife Disease Surveillance Focus Group. Rigorous wildlife disease surveillance. Science 369, 145–147 (2020).
Google Scholar